A Comparison of Texture Models for Automatic Liver Segmentation
نویسندگان
چکیده
Automatic liver segmentation from abdominal computed tomography (CT) images based on gray levels or shape alone is difficult because of the overlap in gray-level ranges and the variation in position and shape of the soft tissues. To address these issues, we propose an automatic liver segmentation method that utilizes low-level features based on texture information; this texture information is expected to be homogenous and consistent across multiple slices for the same organ. Our proposed approach consists of the following steps: first, we perform pixel-level texture extraction; second, we generate liver probability images using a binary classification approach; third, we apply a split-and-merge algorithm to detect the seed set with the highest probability area; and fourth, we apply to the seed set a region growing algorithm iteratively to refine the liver’s boundary and get the final segmentation results. Furthermore, we compare the segmentation results from three different texture extraction methods (Co-occurrence Matrices, Gabor filters, and Markov Random Fields (MRF)) to find the texture method that generates the best liver segmentation. From our experimental results, we found that the co-occurrence model led to the best segmentation, while the Gabor model led to the worst liver segmentation. Moreover, co-occurrence texture features alone produced approximately the same segmentation results as those produced when all the texture features from the combined co-occurrence, Gabor, and MRF models were used. Therefore, in addition to providing an automatic model for liver segmentation, we also conclude that Haralick co-occurrence texture features are the most significant texture characteristics in distinguishing the liver tissue in CT scans.
منابع مشابه
Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAutomatic Classification of Benign And Malignant Liver Tumors In Ultrasound Images
Introduction: Differentiation of benign and malignant liver tumors is very important for finding appropriate treatment procedure. Human eyes sometime are not able to diagnose the type of liver tumor. Texture analysis is considered as a suitable method to increase the diagnostic power of medical images. In this study texture analysis is employed in order to classification of ben...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملBreast abnormalities segmentation using the wavelet transform coefficients aggregation
Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...
متن کاملImprovement of Liver Segmentation by Combining High Order Statistical Texture Features with Anatomical Structural Features
Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007